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Membrane receptor dynamics
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What information does
membrane-receptor dynamics
(specifically, receptor mobility)
reveal about signaling
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What factors affect
receptor mobility!?

* Molecular characteristics (size, number of
transmembrane domains).

* Receptor aggregation.
e Membrane organization and heterogeneity.

¢ Interactions with other proteins, eg:
cytosolic sighaling proteins.



Single particle tracking

Technique to observe dynamics of optically tagged
biomolecules with high spatiotemporal resolution.
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LFA- |

* Cell surface integrin receptor.
* Binds to ICAM-1I.

* Mediates immune synapse

formation between a T cell and an
APC

¢ |nteracts with the actin
cytoskeleton to modulate

lymphocyte adhesion and migration.

Image from Dustin lab



SPT analysis of LFA-|

Previous analysis of LFA-I trajectories on Jurkat cells
revealed two diffusive states.
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This analysis captures an equilibrium distribution, but not the
dynamic transitions between the two states.



A 2-state diffusion model

Ve developed a 2-state model to capture the dynamics
of LFA-| interactions with the actin cytoskeleton.
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A 2-state diffusion model

Ve developed a 2-state model to capture the dynamics
of LFA-| interactions with the actin cytoskeleton.
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Model assumptions:
|. Spatially homogeneous substrate distribution.
2. Distinct diffusion coefficients for the two states.

3. Particle state changes nearly instantaneously (relative to the
acquisition frame rate), and only at the acquisition time.



Consequences of the assumptions:

Spatially homogeneous substrate distribution.

Effectively first order binding with a forward rate constant
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Particle state changes nearly instantaneously (relative to the acquisition frame rate), and
only at the acquisition time.
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A 2-state hidden Markov model
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A 2-state hidden Markov model

Dy

hidden|observed

* Model parametrized by 0 = {D\, D2, p12, p21}

* The likelihood function L[O|O] describes how likely it
is to observe the given set of tracks.

* An efficient algorithm exists to compute the
likelihood function for a given set of parameter values.



HMM parameter optimization

WVe use a stochastic likelihood maximization scheme to
determine the most likely parameter values for an observed
set of tracks.

— The output of the | ] p12
C ! — |= parameter optimization
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parameter values.
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HMM parameter optimization

WVe use a stochastic likelihood maximization scheme to
determine the most likely parameter values for an observed
set of tracks.
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Extensive tests with simulated particle tracks show that this

analysis is robust over a wide range of parameters, provided
D, > 2D
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* Greater precision in estimating diffusion coefficients.

* Transition probabilities contain kinetic information (ko,» and
Koff )

* Possible to statistically test for the most optimal model
using AlC.



Application to LFA-| data

2-state model is substantially statistically preferred over
a |-state model for LFA-I mobility.

Justifications for HIMM
P1 and D2 are well separated.

pl 2 and p21 << frame rate
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* Disrupt

ton shifts the

equilibr 1 and D2 are well separated.

e Multipl

pl 2 and p21 << frame rate

2d activation:

|. Possible changes in binding partner(s).

2. Dynamic remodelling of the actin cytoskeleton.




Further developments

The basic 2-state diffusion model can be extended to include
additional states and other modes of motion, eg: drift +
diffusion.
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Toward a spatial model:
Trajectory segmentation

True state sequence

Predicted state sequence (95% correct)

;

* The 2-state HMM analysis allows us to

infer the most probable sequence of state
switching within individual trajectories

e Experimental LFA-I trajectories show a
range of switching behaviour, suggesting a
role for spatial heterogeneity and/or
confinement.
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Summary

The hidden Markov analysis exposes transient changes
in mobility that occur on a short time scale within
single trajectories.

The likelihood-based model comparison allows for
optimal model selection.

LFA-1 dynamics are well-described by a 2-state model
with a reduced mobility state due to LFA-I
interactions with the actin cytoskeleton that undergo
large-scale changes upon cellular activation.

The HMM analysis can be extended to test for
transient drift and spatial confinement.

[Das, Cairo and Coombs, PLoS Comp Biol, 5,e1000556] [Morrison, Das, Cairo and Coombs (in preparation)]
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